

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

nf-core/test: Documentation

The nf-core/test documentation is split into the following files:

	Installation

	Running the pipeline

	Pipeline configuration

	Adding your own system

	Reference genomes

	Output and how to interpret the results

	Troubleshooting

nf-core/test: Installation

To start using the nf-core/test pipeline, follow the steps below:

	Install Nextflow

	Install the pipeline

	Automatic

	Offline

	Development

	Pipeline configuration

	Software deps: Docker and Singularity

	Software deps: Bioconda

	Configuration profiles

	Reference genomes

	Appendices

	Running on UPPMAX

1) Install NextFlow

Nextflow runs on most POSIX systems (Linux, Mac OSX etc). It can be installed by running the following commands:

Make sure that Java v8+ is installed:
java -version

Install Nextflow
curl -fsSL get.nextflow.io | bash

Add Nextflow binary to your PATH:
mv nextflow ~/bin/
OR system-wide installation:
sudo mv nextflow /usr/local/bin

See nextflow.io [https://www.nextflow.io/] for further instructions on how to install and configure Nextflow.

2) Install the pipeline

2.1) Automatic

This pipeline itself needs no installation - NextFlow will automatically fetch it from GitHub if nf-core/test is specified as the pipeline name.

2.2) Offline

The above method requires an internet connection so that Nextflow can download the pipeline files. If you’re running on a system that has no internet connection, you’ll need to download and transfer the pipeline files manually:

wget https://github.com/nf-core/test/archive/master.zip
mkdir -p ~/my-pipelines/nf-core/
unzip master.zip -d ~/my-pipelines/nf-core/
cd ~/my_data/
nextflow run ~/my-pipelines/nf-core/test-master

To stop nextflow from looking for updates online, you can tell it to run in offline mode by specifying the following environment variable in your ~/.bashrc file:

export NXF_OFFLINE='TRUE'

2.3) Development

If you would like to make changes to the pipeline, it’s best to make a fork on GitHub and then clone the files. Once cloned you can run the pipeline directly as above.

3) Pipeline configuration

By default, the pipeline runs with the standard configuration profile. This uses a number of sensible defaults for process requirements and is suitable for running on a simple (if powerful!) basic server. You can see this configuration in conf/base.config.

Be warned of two important points about this default configuration:

	The default profile uses the local executor

	All jobs are run in the login session. If you’re using a simple server, this may be fine. If you’re using a compute cluster, this is bad as all jobs will run on the head node.

	See the nextflow docs [https://www.nextflow.io/docs/latest/executor.html] for information about running with other hardware backends. Most job scheduler systems are natively supported.

	Nextflow will expect all software to be installed and available on the PATH

3.1) Software deps: Docker

First, install docker on your system: Docker Installation Instructions [https://docs.docker.com/engine/installation/]

Then, running the pipeline with the option -profile standard,docker tells Nextflow to enable Docker for this run. An image containing all of the software requirements will be automatically fetched and used from dockerhub (https://hub.docker.com/r/nfcore/test).

3.1) Software deps: Singularity

If you’re not able to use Docker then Singularity [http://singularity.lbl.gov/] is a great alternative.
The process is very similar: running the pipeline with the option -profile standard,singularity tells Nextflow to enable singularity for this run. An image containing all of the software requirements will be automatically fetched and used from singularity hub.

If running offline with Singularity, you’ll need to download and transfer the Singularity image first:

singularity pull --name nf-core-test.simg shub://nf-core/test

Once transferred, use -with-singularity and specify the path to the image file:

nextflow run /path/to/nf-core-test -with-singularity nf-core-test.simg

Remember to pull updated versions of the singularity image if you update the pipeline.

3.2) Software deps: conda

If you’re not able to use Docker or Singularity, you can instead use conda to manage the software requirements.
This is slower and less reproducible than the above, but is still better than having to install all requirements yourself!
The pipeline ships with a conda environment file and nextflow has built-in support for this.
To use it first ensure that you have conda installed (we recommend miniconda [https://conda.io/miniconda.html]), then follow the same pattern as above and use the flag -profile standard,conda

Appendices

Running on UPPMAX

To run the pipeline on the Swedish UPPMAX [https://www.uppmax.uu.se/] clusters (rackham, irma, bianca etc), use the command line flag -profile uppmax. This tells Nextflow to submit jobs using the SLURM job executor with Singularity for software dependencies.

Note that you will need to specify your UPPMAX project ID when running a pipeline. To do this, use the command line flag --project <project_ID>. The pipeline will exit with an error message if you try to run it pipeline with the default UPPMAX config profile without a project.

Optional Extra: To avoid having to specify your project every time you run Nextflow, you can add it to your personal Nextflow config file instead. Add this line to ~/.nextflow/config:

params.project = 'project_ID' // eg. b2017123

nf-core/test: Output

This document describes the output produced by the pipeline. Most of the plots are taken from the MultiQC report, which summarises results at the end of the pipeline.

Pipeline overview

The pipeline is built using Nextflow [https://www.nextflow.io/]
and processes data using the following steps:

	FastQC - read quality control

	MultiQC - aggregate report, describing results of the whole pipeline

FastQC

FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] gives general quality metrics about your reads. It provides information about the quality score distribution across your reads, the per base sequence content (%T/A/G/C). You get information about adapter contamination and other overrepresented sequences.

For further reading and documentation see the FastQC help [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/].

NB: The FastQC plots displayed in the MultiQC report shows untrimmed reads. They may contain adapter sequence and potentially regions with low quality. To see how your reads look after trimming, look at the FastQC reports in the trim_galore directory.

Output directory: results/fastqc

	sample_fastqc.html

	FastQC report, containing quality metrics for your untrimmed raw fastq files

	zips/sample_fastqc.zip

	zip file containing the FastQC report, tab-delimited data file and plot images

MultiQC

MultiQC [http://multiqc.info] is a visualisation tool that generates a single HTML report summarising all samples in your project. Most of the pipeline QC results are visualised in the report and further statistics are available in within the report data directory.

The pipeline has special steps which allow the software versions used to be reported in the MultiQC output for future traceability.

Output directory: results/multiqc

	Project_multiqc_report.html

	MultiQC report - a standalone HTML file that can be viewed in your web browser

	Project_multiqc_data/

	Directory containing parsed statistics from the different tools used in the pipeline

For more information about how to use MultiQC reports, see http://multiqc.info

nf-core/test: Troubleshooting

Input files not found

If only no file, only one input file , or only read one and not read two is picked up then something is wrong with your input file declaration

	The path must be enclosed in quotes (' or ")

	The path must have at least one * wildcard character. This is even if you are only running one paired end sample.

	When using the pipeline with paired end data, the path must use {1,2} or {R1,R2} notation to specify read pairs.

	If you are running Single end data make sure to specify --singleEnd

If the pipeline can’t find your files then you will get the following error

ERROR ~ Cannot find any reads matching: *{1,2}.fastq.gz

Note that if your sample name is “messy” then you have to be very particular with your glob specification. A file name like L1-1-D-2h_S1_L002_R1_001.fastq.gz can be difficult enough for a human to read. Specifying *{1,2}*.gz wont work give you what you want Whilst *{R1,R2}*.gz will.

Data organization

The pipeline can’t take a list of multiple input files - it takes a glob expression. If your input files are scattered in different paths then we recommend that you generate a directory with symlinked files. If running in paired end mode please make sure that your files are sensibly named so that they can be properly paired. See the previous point.

Extra resources and getting help

If you still have an issue with running the pipeline then feel free to contact us.
Have a look at the pipeline website [https://github.com/nf-core/test] to find out how.

If you have problems that are related to Nextflow and not our pipeline then check out the Nextflow gitter channel [https://gitter.im/nextflow-io/nextflow] or the google group [https://groups.google.com/forum/#%21forum/nextflow].

nf-core/test: Usage

Table of contents

	Introduction

	Running the pipeline

	Updating the pipeline

	Reproducibility

	Main arguments

	-profile

	docker

	awsbatch

	standard

	none

	--reads

	--singleEnd

	Reference Genomes

	--genome

	--fasta

	Job Resources

	Automatic resubmission

	Custom resource requests

	AWS batch specific parameters

	-awsbatch

	--awsqueue

	--awsregion

	Other command line parameters

	--outdir

	--email

	-name

	-resume

	-c

	--max_memory

	--max_time

	--max_cpus

	--plaintext_emails

	--sampleLevel

	--multiqc_config

General Nextflow info

Nextflow handles job submissions on SLURM or other environments, and supervises running the jobs. Thus the Nextflow process must run until the pipeline is finished. We recommend that you put the process running in the background through screen / tmux or similar tool. Alternatively you can run nextflow within a cluster job submitted your job scheduler.

It is recommended to limit the Nextflow Java virtual machines memory. We recommend adding the following line to your environment (typically in ~/.bashrc or ~./bash_profile):

NXF_OPTS='-Xms1g -Xmx4g'

Running the pipeline

The typical command for running the pipeline is as follows:

nextflow run nf-core/test --reads '*_R{1,2}.fastq.gz' -profile standard,docker

This will launch the pipeline with the docker configuration profile. See below for more information about profiles.

Note that the pipeline will create the following files in your working directory:

work # Directory containing the nextflow working files
results # Finished results (configurable, see below)
.nextflow_log # Log file from Nextflow
Other nextflow hidden files, eg. history of pipeline runs and old logs.

Updating the pipeline

When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:

nextflow pull nf-core/test

Reproducibility

It’s a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.

First, go to the nf-core/test releases page [https://github.com/nf-core/test/releases] and find the latest version number - numeric only (eg. 1.3.1). Then specify this when running the pipeline with -r (one hyphen) - eg. -r 1.3.1.

This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future.

Main Arguments

-profile

Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments. Note that multiple profiles can be loaded, for example: -profile standard,docker - the order of arguments is important!

	standard

	The default profile, used if -profile is not specified at all.

	Runs locally and expects all software to be installed and available on the PATH.

	docker

	A generic configuration profile to be used with Docker [http://docker.com/]

	Pulls software from dockerhub: nfcore/test [http://hub.docker.com/r/nfcore/test/]

	singularity

	A generic configuration profile to be used with Singularity [http://singularity.lbl.gov/]

	Pulls software from singularity-hub

	conda

	A generic configuration profile to be used with conda [https://conda.io/docs/]

	Pulls most software from Bioconda [https://bioconda.github.io/]

	awsbatch

	A generic configuration profile to be used with AWS Batch.

	test

	A profile with a complete configuration for automated testing

	Includes links to test data so needs no other parameters

	none

	No configuration at all. Useful if you want to build your own config from scratch and want to avoid loading in the default base config profile (not recommended).

--reads

Use this to specify the location of your input FastQ files. For example:

--reads 'path/to/data/sample_*_{1,2}.fastq'

Please note the following requirements:

	The path must be enclosed in quotes

	The path must have at least one * wildcard character

	When using the pipeline with paired end data, the path must use {1,2} notation to specify read pairs.

If left unspecified, a default pattern is used: data/*{1,2}.fastq.gz

--singleEnd

By default, the pipeline expects paired-end data. If you have single-end data, you need to specify --singleEnd on the command line when you launch the pipeline. A normal glob pattern, enclosed in quotation marks, can then be used for --reads. For example:

--singleEnd --reads '*.fastq'

It is not possible to run a mixture of single-end and paired-end files in one run.

Reference Genomes

The pipeline config files come bundled with paths to the illumina iGenomes reference index files. If running with docker or AWS, the configuration is set up to use the AWS-iGenomes [https://ewels.github.io/AWS-iGenomes/] resource.

--genome (using iGenomes)

There are 31 different species supported in the iGenomes references. To run the pipeline, you must specify which to use with the --genome flag.

You can find the keys to specify the genomes in the iGenomes config file. Common genomes that are supported are:

	Human

	--genome GRCh37

	Mouse

	--genome GRCm38

	Drosophila

	--genome BDGP6

	S. cerevisiae

	--genome 'R64-1-1'

There are numerous others - check the config file for more.

Note that you can use the same configuration setup to save sets of reference files for your own use, even if they are not part of the iGenomes resource. See the Nextflow documentation [https://www.nextflow.io/docs/latest/config.html] for instructions on where to save such a file.

The syntax for this reference configuration is as follows:

params {
 genomes {
 'GRCh37' {
 fasta = '<path to the genome fasta file>' // Used if no star index given
 }
 // Any number of additional genomes, key is used with --genome
 }
}

--fasta

If you prefer, you can specify the full path to your reference genome when you run the pipeline:

--fasta '[path to Fasta reference]'

Job Resources

Automatic resubmission

Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with an error code of 143 (exceeded requested resources) it will automatically resubmit with higher requests (2 x original, then 3 x original). If it still fails after three times then the pipeline is stopped.

Custom resource requests

Wherever process-specific requirements are set in the pipeline, the default value can be changed by creating a custom config file. See the files in conf for examples.

AWS Batch specific parameters

Running the pipeline on AWS Batch requires a couple of specific parameters to be set according to your AWS Batch configuration. Please use the -awsbatch profile and then specify all of the following parameters.

--awsqueue

The JobQueue that you intend to use on AWS Batch.

--awsregion

The AWS region to run your job in. Default is set to eu-west-1 but can be adjusted to your needs.

Please make sure to also set the -w/--work-dir and --outdir parameters to a S3 storage bucket of your choice - you’ll get an error message notifying you if you didn’t.

Other command line parameters

--outdir

The output directory where the results will be saved.

--email

Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits. If set in your user config file (~/.nextflow/config) then you don’t need to speicfy this on the command line for every run.

-name

Name for the pipeline run. If not specified, Nextflow will automatically generate a random mnemonic.

This is used in the MultiQC report (if not default) and in the summary HTML / e-mail (always).

NB: Single hyphen (core Nextflow option)

-resume

Specify this when restarting a pipeline. Nextflow will used cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously.

You can also supply a run name to resume a specific run: -resume [run-name]. Use the nextflow log command to show previous run names.

NB: Single hyphen (core Nextflow option)

-c

Specify the path to a specific config file (this is a core NextFlow command).

NB: Single hyphen (core Nextflow option)

Note - you can use this to override defaults. For example, you can specify a config file using -c that contains the following:

process.$multiqc.module = []

--max_memory

Use to set a top-limit for the default memory requirement for each process.
Should be a string in the format integer-unit. eg. `–max_memory ‘8.GB’``

--max_time

Use to set a top-limit for the default time requirement for each process.
Should be a string in the format integer-unit. eg. --max_time '2.h'

--max_cpus

Use to set a top-limit for the default CPU requirement for each process.
Should be a string in the format integer-unit. eg. --max_cpus 1

--plaintext_email

Set to receive plain-text e-mails instead of HTML formatted.

--multiqc_config
Specify a path to a custom MultiQC configuration file.

nf-core/test: Configuration for other clusters

It is entirely possible to run this pipeline on other clusters, though you will need to set up your own config file so that the pipeline knows how to work with your cluster.

If you think that there are other people using the pipeline who would benefit from your configuration (eg. other common cluster setups), please let us know. We can add a new configuration and profile which can used by specifying -profile <name> when running the pipeline.

If you are the only person to be running this pipeline, you can create your config file as ~/.nextflow/config and it will be applied every time you run Nextflow. Alternatively, save the file anywhere and reference it when running the pipeline with -c path/to/config (see the Nextflow documentation [https://www.nextflow.io/docs/latest/config.html] for more).

A basic configuration comes with the pipeline, which runs by default (the standard config profile - see conf/base.config). This means that you only need to configure the specifics for your system and overwrite any defaults that you want to change.

Cluster Environment

By default, pipeline uses the local Nextflow executor - in other words, all jobs are run in the login session. If you’re using a simple server, this may be fine. If you’re using a compute cluster, this is bad as all jobs will run on the head node.

To specify your cluster environment, add the following line to your config file:

process.executor = 'YOUR_SYSTEM_TYPE'

Many different cluster types are supported by Nextflow. For more information, please see the Nextflow documentation [https://www.nextflow.io/docs/latest/executor.html].

Note that you may need to specify cluster options, such as a project or queue. To do so, use the clusterOptions config option:

process {
 executor = 'SLURM'
 clusterOptions = '-A myproject'
}

Software Requirements

To run the pipeline, several software packages are required. How you satisfy these requirements is essentially up to you and depends on your system. If possible, we highly recommend using either Docker or Singularity.

Please see the installation documentation for how to run using the below as a one-off. These instructions are about configuring a config file for repeated use.

Docker

Docker is a great way to run nf-core/test, as it manages all software installations and allows the pipeline to be run in an identical software environment across a range of systems.

Nextflow has excellent integration [https://www.nextflow.io/docs/latest/docker.html] with Docker, and beyond installing the two tools, not much else is required - nextflow will automatically fetch the nfcore/test [https://hub.docker.com/r/nfcore/test/] image that we have created and is hosted at dockerhub at run time.

To add docker support to your own config file, add the following:

docker.enabled = true
process.container = "nfcore/test"

Note that the dockerhub organisation name annoyingly can’t have a hyphen, so is nfcore and not nf-core.

Singularity image

Many HPC environments are not able to run Docker due to security issues.
Singularity [http://singularity.lbl.gov/] is a tool designed to run on such HPC systems which is very similar to Docker.

To specify singularity usage in your pipeline config file, add the following:

singularity.enabled = true
process.container = "shub://nf-core/test"

If you intend to run the pipeline offline, nextflow will not be able to automatically download the singularity image for you.
Instead, you’ll have to do this yourself manually first, transfer the image file and then point to that.

First, pull the image file where you have an internet connection:

singularity pull --name nf-core-test.simg shub://nf-core/test

Then transfer this file and point the config file to the image:

singularity.enabled = true
process.container = "/path/to/nf-core-test.simg"

Conda

If you’re not able to use Docker or Singularity, you can instead use conda to manage the software requirements.
To use conda in your own config file, add the following:

process.conda = "$baseDir/environment.yml"

nf-core/test: Reference Genomes Configuration

The nf-core/test pipeline needs a reference genome for alignment and annotation.

These paths can be supplied on the command line at run time (see the usage docs),
but for convenience it’s often better to save these paths in a nextflow config file.
See below for instructions on how to do this.
Read Adding your own system to find out how to set up custom config files.

Adding paths to a config file

Specifying long paths every time you run the pipeline is a pain.
To make this easier, the pipeline comes configured to understand reference genome keywords which correspond to preconfigured paths, meaning that you can just specify --genome ID when running the pipeline.

Note that this genome key can also be specified in a config file if you always use the same genome.

To use this system, add paths to your config file using the following template:

params {
 genomes {
 'YOUR-ID' {
 fasta = '<PATH TO FASTA FILE>/genome.fa'
 }
 'OTHER-GENOME' {
 // [..]
 }
 }
 // Optional - default genome. Ignored if --genome 'OTHER-GENOME' specified on command line
 genome = 'YOUR-ID'
}

You can add as many genomes as you like as long as they have unique IDs.

illumina iGenomes

To make the use of reference genomes easier, illumina has developed a centralised resource called iGenomes [https://support.illumina.com/sequencing/sequencing_software/igenome.html].
Multiple reference index types are held together with consistent structure for multiple genomes.

We have put a copy of iGenomes up onto AWS S3 hosting and this pipeline is configured to use this by default.
The hosting fees for AWS iGenomes are currently kindly funded by a grant from Amazon.
The pipeline will automatically download the required reference files when you run the pipeline.
For more information about the AWS iGenomes, see https://ewels.github.io/AWS-iGenomes/

Downloading the files takes time and bandwidth, so we recommend making a local copy of the iGenomes resource.
Once downloaded, you can customise the variable params.igenomes_base in your custom configuration file to point to the reference location.
For example:

params.igenomes_base = '/path/to/data/igenomes/'

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

